Multipurpose Laser Offers Unique Approach to Restorative Dentistry

By Ronald E. Goldstein, DDS

Few professions have worked as hard as dentistry to convince the public of the value of its services and especially to make these services as attractive as possible. Of no minor importance is the realization that patients want and appreciate dentistry's efforts to make dental visits more pleasant. Efforts to communicate advancement in dentistry is seen in written advertisements, as well as television coverage of just how painless and high-tech a visit to the dentist has become. Helping improve the public's perception that dentistry has come a long way since the “old-fashioned drill” is the addition of lasers to the dentists' armamentarium.

Our practice has had an association with various dental lasers since they were introduced to dentistry. At one time or another, we have essentially incorporated most wavelengths into patient treatment. We have used CO₂, Nd:YAG and diode lasers for soft tissue applications and use argon technology for curing and power bleaching. Each have had unique features that allowed us to improve the manner in which we do dentistry.

Recently, we became interested in a totally new wavelength that could be used for dental purposes, the Er, Cr:YSGG wavelength (2780nm), found in the Millennium Laser (Biolase Technology, Inc). This unique crystal generates photons through a fiber delivery system emitting from a handpiece with a sapphire crystal that is bathed in an air and water atomization spray. The system emits photons at a wavelength of 2780nm and a repetition rate of 20Hz. The power output can vary from 0 to 6 W. The beam spot size is 0.442mm² with the use of the 750µm fiber. There are several unique properties possessed by this system that make it entirely appropriate for dental practice.

A major feature of the Er, Cr:YSGG system includes a previously unknown method of cutting tissues, called laser hydrokinetics. Hydrokinetics is the process of removing biocalcified tissue through optimized absorption of Er, Cr:YSGG laser energy by atomized water particles that result in energized microparticles capable of precise tissue cutting. Water particles are the energized agent which remove the target tissue.

If the power of the laser is lowered significantly, and most or all of the water is eliminated while applying a small amount of air co-axially...
As previously stated, a major advantage of the Er, Cr:YSGG laser is the ability to be able to treat both hard and soft tissues with the same instrument, thus saving time and providing the patient with a highly efficient dual procedure. Presented here are two cases using the Er, Cr:YSGG in its dual capacity treating hard and soft tissue. No anesthesia was required in either case. One of the advantages of using this laser in its hard tissue mode is that tooth structure can be preserved by eliminating only the diseased portion and not causing microfractures. The Er, Cr:YSGG laser leaves no smear layer, eliminating the need to etch. However, if acid is used in conjunction, a stronger bond is developed than using either one alone.

CASE 1

The first case was a geriatric patient with advanced caries in need of a disto-occlusal restoration on tooth No. 28. Figure 1 shows the position of the laser as it should be used in the operatory.

The laser, resembling a common dental handpiece, makes the preparation. After the laser was used to prepare the tooth, it was noted that the gingival tissue had grown into the disto-gingival defect (Figure 2). The hard tissue was cut using the dosimetry shown in chart 1.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Air</th>
<th>Power</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enamel</td>
<td>50%</td>
<td>6 W</td>
<td>50%</td>
</tr>
<tr>
<td>(300 mJ)</td>
<td></td>
<td>(300 mJ)</td>
<td></td>
</tr>
<tr>
<td>Dentin</td>
<td>40%</td>
<td>4 W</td>
<td>40%</td>
</tr>
<tr>
<td>(200 mJ)</td>
<td></td>
<td>(200 mJ)</td>
<td></td>
</tr>
<tr>
<td>Carious Lesion</td>
<td>20%</td>
<td>2 W</td>
<td>20%</td>
</tr>
<tr>
<td>(100 mJ)</td>
<td></td>
<td>(100 mJ)</td>
<td></td>
</tr>
</tbody>
</table>

The laser is used in the soft tissue mode with 14% air and 1.25 W of power and no water. Occasionally, 5% to 7% water might be used for patient comfort. However, in this case, due to its hyperemic nature, no water was used (Figure 4). The disto-gingival margin is now much easier to see and finish (Figure 5). The adjacent teeth (Nos. 26 and 27) are prepared using the dentin setting for hard tissue removal. Again,
the patient felt no sensitivity (Figure 6). Undercuts and precision cutting are easy to obtain with the new handpiece (Figure 7). The final restoration of the right lateral (No. 26), cuspid (No. 27) and first bicuspid (No. 28) are restored using a hybrid composite resin (Figure 8).

CASE 2

The patient presented with a disto-lingual carious defect in the upper left lateral incisor (No. 10) and incisal edge of the cuspid (No. 11). The upper teeth will eventually be treated with porcelain laminates that will overlap the incisal edges (Figure 9).

The Er, Cr:YSGG system was used on the enamel setting to partially prepare the lingual lesion. The laser is readjusted to the soft tissue setting to remove the excess tissue (Figure 10).

Once the tissue is removed, the
The patient returned 7 days postoperative. Notice how well the tissue has healed (Figure 12).

DISCUSSION

First the high-speed drill, then air abrasion, and now the “cutting” laser add up to a complete range of technology to prepare teeth in a precise and often painless method. What is exciting about this newest of lasers is its usefulness in preparing virtually any classification of cavities as well as its ability to help treat an adjunctive soft tissue problem that may be discovered.

Approximately 50% of the U.S. population fails to see a dentist routinely. This is partially caused by the perception that dentistry is painful, so should be avoided at all costs. With the development and implementation of this new technology, dentistry has another valuable aid that can certainly help to improve public opinion concerning dental treatments.†

Recommended Reading

8. Gutknecht N. Enamel and dentin cutting efficacy of Er:YAG, Er, Cr:YSGG hydrokinetic system and dental bur [abstract]. Deutsch Gesellschaft für laser Zahnheilkunde e.V.

Dr. Goldstein is president of the International Federation of Esthetic Dentistry, and is cofounder of the American Academy of Esthetic Dentistry. He is clinical professor of Oral Rehabilitation at the medical college in Georgia School of Dentistry, and adjunct clinical professor of Prosthodontics at Boston University School of Dental Medicine. He is an author and co-author of seven published texts, including the best seller consumer book, Change Your Smile. He can be reached at (404) 261-4941 or send e-mail to goldsteingarber@goldsteingarber.com.