Three-Dimensional Bone and Soft Tissue Requirements for Optimizing Esthetic Results in Compromised Cases with Multiple Implants

Tomohiro Ishikawa, DDS¹/Maurice Salama, DMD²/Akiyoshi Funato, DDS³
Hajime Kitajima, DDS⁴/Hidetada Moroi, DMD⁵
Henry Salama, DMD²/David Garber, DMD⁶

Achieving an esthetic outcome in tooth replacement and implant treatment requires a proper tooth shape and stable surrounding soft tissue profiles. Bone augmentation is considered vital to support the esthetic soft tissue profile around definitive restorations. To prevent recession of the peri-implant soft tissue in cases with multiple implants, buccal bone augmentation of more than 2 mm from the implant platform is necessary to overcome the normal pattern of bone remodeling. Drawing an imaginary horizontal line spanning the space between the remaining healthy interproximal bone peaks is the most reliable vertical augmentation target to create esthetic papillae around an implant prosthesis. Provided that the adjacent bone peaks are at an ideal height and the bone is augmented vertically up to this line, the accepted general guideline of 2 to 3 mm of interproximal vertical bone augmentation from ideally placed implant platforms will invariably also be achieved. In addition, placing pontics in strategic positions to avoid consecutively placed implants has been suggested to facilitate vertical bone height preservation after bone augmentation. Even with esthetically successful results, there have been very few long-term studies on compromised cases with multiple implants. This will become more and more critical over time and must be remedied. (Int J Periodontics Restorative Dent 2010;30:503–511.)

¹Private Practice, Hamamatsu, Shizuoka, Japan.
²Clinical Assistant Professor of Periodontics, University of Pennsylvania, Philadelphia, Pennsylvania; Medical College of Georgia, Augusta, Georgia; Private Practice, Atlanta, Georgia.
³Private Practice, Kanazawa, Ishikawa, Japan.
⁴Private Practice, Iwata, Shizuoka, Japan.
⁵Clinical Assistant Professor, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts; Private Practice, Boston, Massachusetts.
⁶Clinical Assistant Professor of Periodontics, University of Pennsylvania, Philadelphia, Pennsylvania; Private Practice, Atlanta, Georgia.

Correspondence to: Dr Tomohiro Ishikawa, 1745 Tennou, Higashiku, Hamamatsu, Shizuoka, Japan 435-0052; fax: +81 53 466 6481.

Dental implant treatment should always be performed with esthetics in mind¹; this requires proper tooth shape and stable surrounding soft tissue profiles. In single-tooth implants, interdental papillae are restored predictably by maintaining the health of the adjacent periodontium.² Alternatively, in cases with multiple implants, the peri-implant soft tissue is guided and shaped by the restoration and supported by the bone foundation. Restoring soft tissue esthetics in cases with multiple implants remains a great challenge,³ since bone remodeling and resorption occur at the implant-abutment junction and peri-implant soft tissue does not share the natural tooth's attachment apparatus and blood supply.⁴ In this article, the concepts behind achieving esthetic and functional implant restorations and the necessary three-dimensional peri-implant hard and soft tissue management required to realize these goals are discussed.
Three-dimensional bone augmentation

Horizontal parameters

It has been found that between 1.3 and 1.4 mm of horizontal bone resorption and 1.5 to 2.0 mm of vertical bone resorption occur at the implant-abutment junction. This could result in total soft tissue volume loss, gingival recession, and subsequent esthetic problems in the labial and interproximal areas. To maintain esthetic results and prevent future soft tissue recession, Grunder et al. recommended augmenting the labial bone foundation beyond the implant platform by at least 2 to 4 mm to adequately compensate for the natural bone remodelling that occurs following restoration and loading.

The routine procedures involved in implant site osteotomy and placement are traumatic to the hard tissue. In a worst-case scenario, if alveolar bone thickness is not adequate, implant placement could lead to the total loss of bone, especially on the labial aspect of the ridge. In cases with multiple implants, supporting the ideal crown form and soft tissue profile requires at least 2 mm of labial bone foundation from the implant platform. To support the ideal crown form and soft tissue profile, the implant platform is usually placed 1 to 2 mm lingual to the future gingival margin. Therefore, the bone should be more buccal than the future gingival margin (> 2 mm). This should establish maintainable facial bone support for the stability of the labial soft tissue profile.

Additionally, after bone augmentation, the mucogingival junction often moves in a coronal direction, and the soft tissue thickness over the barrier membrane is reduced because of the compromised blood supply to the area.

Berglundh and Lindhe reported that when peri-implant soft tissue thickness was reduced intentionally to less than 2 mm in dogs, bone resorption occurred around the implant to reestablish a 3-mm peri-implant soft tissue thickness. Kan et al. found that a thick biotype maintained better peri-implant soft tissue height at all measuring points on the labial and interproximal surfaces. Jung et al. reported that mucosal thickness is a crucial factor in terms of the discoloration caused by different restorative materials.

It would therefore appear that soft tissue augmentation is advisable after bone augmentation, not only because of the gain in keratinized tissue and soft tissue thickness, but also to maintain the regenerated bone and tissue color for optimal esthetics.

Vertical parameters

In natural teeth, crestal bone height typically follows the cementoenamel junction, approximately 3 mm apical to the proximal surfaces in relation to the facial. The biologic width at the facial aspect is approximately 3 mm. To allow for adequate prosthetic space, implants should be placed 2 to 3 mm apical to the free gingival margin at the facial aspect. An ideally placed implant platform would then be 2 to 3 mm apical to the interproximal height of bone because of the flat nature of the typical implant platform (Fig 1). Hence, in cases with single and multiple implants, the vertical bone height in the proximal area is suggested to be 2 to 3 mm coronal to the implant platform, which is the ideal position.

For multiple implants, papillae are created by a combination of prosthetic components and adequate vertical bone support. To create esthetic papillae around an implant prosthesis, the most reliable vertical augmentation target is achieved by drawing an imaginary horizontal line spanning the space between the remaining healthy interproximal bone peaks. Provided that the adjacent bone peaks are at an ideal height and the bone is augmented vertically up to this line, the accepted general
guideline of 2 to 3 mm of interproximal vertical bone augmentation from ideally placed implant platforms will invariably also be achieved.

Unfortunately, some degree of resorption will always be experienced clinically. Dahlin et al.\(^\text{17}\) found that using a combination of 3-mm abutments, bovine hydroxyapatite, and membranes to augment interproximal bone and optimize the papillae appearance ultimately preserved an esthetic result at 5 years, even after the unavoidable ridge resorption (Figs 2 to 10).

When there is significant attachment loss present, restoring the bone level on adjacent teeth through orthodontic extrusion may be required prior to vertical bone augmentation.\(^\text{18}\)
Fig 6 Autogenous bone particles mixed with Bio-Oss (Geistlich) and soaked in recombinant human platelet-derived growth factor were held in place by titanium mesh. The three implants acted as a support for the graft and mesh. A cross-linked collagen membrane was used as a barrier.

Fig 7 The implants were completely covered with regenerated tissue 7 months later. However, an additional 2 to 3 mm of vertical augmentation was necessary to achieve an esthetic outcome.

Fig 8 Vertical augmentation was accompanied by a 4-mm buccal horizontal augmentation and a 3-mm lingual horizontal augmentation.

Fig 9 Secondary guided bone regeneration was performed to reconstruct the optimal interproximal height of bone. Three healing abutments were used to support the titanium mesh.

Fig 10 An interpositional subepithelial connective tissue graft was performed to correct the displaced mucogingival junction and to acquire optimal soft tissue thickness.
Strategic pontic placement

If implants are placed at a distance of less than 3 mm, the bone height between them will be reduced as bone remodeling occurs, and the related papilla height between them will also be reduced. Scarano et al.19 measured the distance necessary to diminish bone resorption between implants. They reported that maintaining a 5-mm interimplant distance resulted in no significant bone resorption, but as the interimplant distance decreased, the amount of bone resorption increased accordingly.

Salama et al.20 reported the three classifications of interproximal bone support (Fig 11) and the classification of predicting the height of interdental papillae in six different fixed restorative environments (Table 1).21 Implant-to-implant papillae showed the lowest vertical height, while implant-to-pontic papillae maintained a comparatively superior vertical height. Salama et al concluded that in multiple tooth replacement, the distance between the interproximal height of bone and the proximal crown contact point may vary from 3.5 to 6.5 mm, depending on the type of restoration selected.

Table 1 Classification of predicted height of interdental papillae21

<table>
<thead>
<tr>
<th>Class</th>
<th>Restorative environment</th>
<th>Proximity limitations (mm)</th>
<th>Vertical soft tissue limitations (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tooth-tooth</td>
<td>1.0</td>
<td>5.0</td>
</tr>
<tr>
<td>2</td>
<td>Tooth-pontic</td>
<td>NA</td>
<td>6.5</td>
</tr>
<tr>
<td>3</td>
<td>Pontic-pontic</td>
<td>NA</td>
<td>6.0</td>
</tr>
<tr>
<td>4</td>
<td>Tooth-implant</td>
<td>1.5</td>
<td>4.5</td>
</tr>
<tr>
<td>5</td>
<td>Implant-pontic</td>
<td>NA</td>
<td>5.5</td>
</tr>
<tr>
<td>6</td>
<td>Implant-implant</td>
<td>3.0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

NA = not applicable.
Tarnow et al22 measured the height of interim plant papillae and reported the mean papillae height between two implants was 3.4 mm, with 3- and 4-mm-high papillae representing 72.8\% of the total sites evaluated.

To create adequate papillae form between adjacent implants, the ideally augmented interproximal bone height should be 3.5 mm from the projected final restorative contact area, although this is impossible to maintain clinically.

In cases with multiple implants, it is suggested that placing a pontic in a strategic position is better than placing adjoining implants, since this would minimize the loss of vertical bone height resulting from crestal bone remodeling and facilitate greater soft tissue height in the proximal area.21,23

Even if papillae heights between varied restorative environments are different, the clinician can merely aim to achieve the vertical bone augmentation standard of a solid bone frame connecting the two adjacent bone peaks. Therefore, in a clinical reality, the papillae must be adjusted using manipulation of the subgingival contour of the abutment and the crown. The crown contour can also be modified supragingivally to create acceptable embrasure spaces (Figs 12 to 14).

Platform switching,24–26 Laser-Lok microchannels,27 one-piece implants, and reducing the numbers of abutment try-ins28 has also been postulated to reduce bone resorption at the implant-abutment junction and maintain long-term soft tissue stability.

\textbf{Fig 12} Final treatment outcome. This patient had a high smile line, so establishing a truly esthetic soft tissue frame necessitated the creation of natural tissue over the entire restoration area.

\textbf{Fig 13} A natural-looking keratinized soft tissue frame was achieved using a subepithelial connective tissue graft.
Using the same procedures and concept, very similar results have been achieved in multiple patients.29

Conclusion

To achieve an esthetic outcome in cases with multiple implants, augmentation of the vertical and horizontal bone foundation and the gingival tissue is critical to overcome the bone remodeling that occurs at the implant platform level. Selecting better prosthetic environments (avoiding adjacent implants), reducing the number of times that abutments need to be removed and reinserted, as well as using one-piece implants, micro-grooves, and platform switching, may all eventually provide assistance in maintaining bone and soft tissue height around implants. Soft tissue augmentation is often necessary simultaneous to or after bone augmentation, not only for gaining adequate keratinized tissue and soft tissue thickness, but also in maintaining regenerated bone and esthetic contours of the definitive restoration. Even with successful results, we must keep in mind that there have been very few long-term studies regarding the esthetic results of compromised multiple implants. This is a factor that will become more and more critical over time and must be remedied.

Fig 14 Periapical radiograph taken 2 years after the implants became functional. Regenerated tissue height was preserved by using a strategically placed pontic instead of all three neighboring implants. Platform switching seems to have had a positive effect on the bone preservation around the functioning implants.
Acknowledgments

The authors express their deepest appreciation to Drs Myron Nevins and Yoshihiro Ono for their encouragement and mentorship. They would also like to acknowledge Kiyoshi Nakajima for his excellent prosthesis fabrication.

References

