NobelGuide™

DIGITAL PRECISION FOR ALL INDICATIONS
At a glance.

| Highlights | Diagnostic, treatment planning and guided surgery system
| | Safe and predictable implant site preparation and insertion
| | All clinical indications
| | Prosthetic-driven planning
| | Minimally invasive surgery
| | Single-source for treatment components and support
| | Reliable digital dentistry partner
| Indications | Partial (from single to multiple teeth missing)
| | Fully edentulous
| Surgical access | Flapless, Mini-flap, Flap
| Surgical templates | Tooth supported
| | Tooth/mucosa supported
| | Mucosa/anchor pin supported
| Restoration methods | Immediate function
| | Delayed function
| Implant systems | NobelReplace™ Tapered Groovy
| | NobelReplace™ Straight Groovy
| | NobelSpeedy™
| | Brånemark System®
| | NobelActive™ (coming 2009)
| Prosthetic flexibility | Complete standardized and individualized (NobelProcera™)
| | prosthetic assortment
| | Temporary and final prosthetic solutions:
| | – Fixed: screw and cement retained
| | – Removable: bar, ball, locator and telescope
| Software features | Planning can be done independent of location and time
| | Full 3D scene visualizing bone, implants, radiographic
| | guide and anatomical cross-sections
| | Split-screen planning:
| | – Full 3D
| | – Anatomical cross-section (dental reslice)
| | Manufacturing warnings ensure predictable surgical
| | template production
|
NobelGuide™ is a complete treatment concept for diagnostics, prosthetic-driven planning and guided implant surgery for all indications – from a single missing tooth to a fully edentulous jaw.

Prosthetic-driven planning
NobelGuide uses a prosthetic-driven approach that optimizes biomechanics, functionality and esthetics of the prosthetic restoration.

Safe and predictable treatment
Thorough diagnostics and planning ensure surgical procedures are well-prepared and documented in advance, which results in safe and predictable treatments.

Minimally invasive techniques
NobelGuide allows for minimally invasive, or flapless, surgical procedures, but also supports mini-flap and flap approaches for advanced users.

User-friendly intuitive interface
The new NobelGuide planning software version is easy and flexible to use.

Single point-of-contact
NobelGuide is the only system that provides users a single source for surgical and lab components, and support.

Integrated team approach
NobelGuide simplifies sharing of planning information and facilitates decision-making within the entire interdisciplinary team, as well as with the referral network.

Proven digital dentistry leader
Nobel Biocare is a pioneer and innovation leader in implantology, prosthetics and digital dentistry, building on a heritage of more than 40 years of scientific dental research.
Prior to the digital workflow, thorough clinical examination and chair-side diagnostics are performed.

All clinical information is gathered, and prepared together with 3D radiographic data, for software diagnostics and treatment planning. Implants are virtually placed to optimize prosthetics.

As an option, a master cast can be created from the surgical template, with the planned implants in place, and used for pre-fabricating provisional and/or final prosthetics.

Together with the dental technician, a tooth setup is created to visualize the final prosthetic. The setup is evaluated for function and esthetics, and then transformed into a radiographic guide.

Following planning, a surgical template is automatically designed and available for online ordering. The surgical template guides the exact drilling and placement of the virtual planned implants.
NobelGuide™ – the complete treatment workflow.

NobelGuide CT-based 3D diagnostics provide full control over the surgical and restorative parameters of the individual case.

Diagnostics and scanning
Clinical diagnostics
Prior to the digital workflow, thorough clinical examination and chair-side diagnostics are performed. Detailed diagnostics give a clear understanding of the medical/dental status and prosthetic characteristics of the case, which minimizes uncertainty from the procedure. Dental impressions and a bite registration are taken as well.

Radiographic guide fabrication
Based on an impression and bite registration, a tooth setup is created that visualizes the final prosthetic. The setup is evaluated for function and esthetics, and then transformed into a radiographic guide. NobelGuide follows a unique scanning protocol that uses two independent scans to acquire patient anatomy and visualize radiographic guide. The protocol is called “double scan” technique.

Computed tomography (CT) scanning
Digitization is performed through 3D radiographic imaging: medical computed tomography (CT) scanners or compatible cone beam CT scanners. Clinical diagnostics, CT scanning of the radiographic guide and patient form the basis for planning, evaluating and defining the optimal positions of the dental implants.

Planning, placement and restoration
Treatment planning
Based on the information form the double-scan technique, implants can be virtually planned according to clinical, anatomical and prosthetic aspects.

Tools are available for sharing planning information, facilitating discussions and assisting in decision-making between the cross-functional treatment team, referral network and the patient.

Guided implantology
Based on the planning, a surgical template is automatically designed and available for online ordering, which contains all planning information and fully guides the surgery. NobelGuide uses guided sleeves in the surgical template and a guided implant mount – implant-system compatible – to ensure precision placement of implants.

Pre-fabricated prosthetics
The same surgical template can be used for prefabrication of prosthetics in the dental laboratory. In addition to the surgical template, all necessary surgical and lab components used in a specific treatment can be ordered online.

Preparation for pre-fabrication of prosthetics is explained in detail on page 15.
Anatomical and prosthetic status digitized through double scan procedure

Scan 1
Patient + radiographic guide + bite index

Scan 2
Radiographic Guide
NobelGuide™ – the full clinical picture in 3D.

Patient selection, as well as clinical and prosthetic chair-side diagnostics, is crucial at the beginning of any implant treatment.

Clinical diagnostics
The current status, demands and wishes of the patient need to be collected and discussed with the patient. Impressions are taken, and if possible, a bite is registered to start lab site diagnostics. In cases of insufficiently available support, the bite registration takes place in the next session, with customized bite registration plates produced by the dental laboratory.

Radiographic guide fabrication
The clinically validated tooth setup is transformed in a radiographic guide. In this way, the prosthetic targets are ready to be digitized. Markers on the radiographic guide enable a perfect match during the double scan procedure in order to correctly attach the high resolution scan of the radiographic guide to the patient 3D dataset.

Computed tomography (CT) scanning
With the double scan protocol, both the patient’s anatomy and the radiographic guide are digitized. In this way, anatomical data as well as prosthetic targets are visualized.

Planning in 3D provides the closest representation of the actual patient situation and allows for precise diagnostics and treatment implementation.

With the increasing install base of CBCT scanners, CT imaging is an accessible technology with good accuracy, acceptable cost and low radiation dose. The proliferation and streamlining of the latest CT machinery has increased patient acceptance of CT and CB methodology as a viable scanning technique.

Scientific evidence

3D-based planning for optimal treatment management.

User friendly, intuitive interface
Built in implant library and ordering system for maximum convenience.

Software features
Enabling ideal implant placement respecting all anatomical structures.

Split-screen planning
- On the left, a combined 3D visualization allowing manipulation of the bone model, radiographic guide, implants and all other planning objects.
- On the right, a 2D visualization of the patient's anatomy, objects and CT data for diagnostics and secure treatment planning.

Prosthetic driven planning
Enables optimal aesthetics and functional outcome.

Reslice viewer
To inspect the anatomy and bone quality in the selected dental reslice location and to search for possible implant sites.

Precise transfer of planning
In a fully controlled process secured with compatible tooling.

Reslice scroll bar
To move the reslice along a customized reslice curve.

Combining information about the envisioned prosthesis (represented by the radiographic guide) and 3D radiographic data, dental professionals are in full control of relevant parameters necessary for determining the optimal implant position in a virtual environment.

Prosthetic-driven planning
Biomechanical, functional and esthetic demands, as well as the quantity and quality of bone at the selected site, are fully integrated into the decision-making process. By planning from a prosthetic requirement perspective, the demands of innovative prosthetics, such as a NobelProcera Implant Bridge Zirconia are met.

Intuitive and versatile interface
NobelGuide assists dental professionals through the diagnostics and virtual planning procedures. While the complete 3D scene is displayed on the left side panel of the planning screen, a cross section (reslice plane) is shown simultaneously on the right side, enabling an inspection of the patient in greater detail without losing the anatomical overview.

With the combination of a 3D bone model and 3D radiological dataset, dental professionals can evaluate bone quantity and quality surrounding the implant. Datasets are presented in fully customized reslice planes using grey values (cone-beam CT) or Hounsfield Unit (HU) values (single-slice or multi-slice spiral CT).

Relevant anatomical structures such as nerves and blood vessels, as well as dental roots can be identified and marked in one or more reslice views. All these tools enable state-of-the-art treatment planning.

User friendliness and efficiency have been further improved with the implementation of additional right mouse click features.
Digital orthopantomogram (OPG) view (Panorex)
Simulation of conventional OPG view enables immediate overview and facilitates communication with partners and health care systems more familiar with OPG images. All implants planned can be included in this view.
There are several new and updated assistants in NobelGuide which facilitate the planning stage of an implant-supported treatment solution.

Mark important anatomical structures
Special tools are available for highlighting nerves, dental roots and other anatomical structures/restrictions. These anatomical annotations are visible in the 3D scene and the right viewer (Figure 1).

Rotate the reslice planes in several directions
Diagnostics and planned placement of angulated implants is simplified; mesio-distal and buccal-lingual rotations are possible (Figure 2).

Move a reslice to an implant axis
Bone quality and quantity (as well as proximity to neighboring roots) around an implant can be examined by attaching a reslice parallel to its axis. Reslice orientation (e.g. rotation) is changed with sliders (Figure 3).

Position an implant parallel to another implant
New implants can be placed parallel to an already positioned implant simply by clicking on a specific position in a reslice view. Only small modifications are needed to define the final location (Figure 4).

Warning tools to show technical restrictions
Guided sleeves become red when their positions inhibit production of the surgical template (Figure 5).

Visualization of safety zone
A safety zone for each implant is visible. Ideally the safety zone is completely surrounded by bone (Figure 6).
NobelGuide™

Guided sleeve
Positioned in the surgical template, sleeves contain all planning information needed to execute a safe surgery.

Guided implant mount
With sleeve and guided implant mount, NobelGuide allows for fully-guided implant insertion.

Fully-guided implant surgery for maximized treatment predictability.

Implant
Implants are securely attached to the guided implant mount.

Planning the entire treatment in a 3D environment minimizes the uncertainties associated with ordinary dental implant restorations. Planning also allows the production of a surgical template that guides implant placement.

Surgical template production
After finalizing and approving the treatment plan, a corresponding surgical template is calculated directly from specifications of implants being used. NobelGuide offers the option to order this surgical template online with only a few mouse-clicks.

Implant system flexibility
NobelGuide is compatible with several Nobel Biocare systems. Tooling, drill kits and corresponding drilling protocols are optimized for ease-of-use with NobelGuide.

Minimally invasive procedures
NobelGuide allows for safe guided surgery techniques\(^2,3\) that minimize patient pain and swelling. With NobelGuide, patients can often return to normal life sooner\(^8\).

The surgical template enables safe and predictable, guided surgery, and can be produced for all indications – single unit, partial edentulous and totally edentulous cases.

Depending on the indication and the planning, anchor pin sleeves are implemented into the surgical template. Anchor pins are designed to secure the position of the surgical template during the surgery.

Conventional techniques still possible
Using NobelGuide however, does not limit the treatment portfolio to a flapless approach; mini-flaps and full flaps are possible for the advanced user in selected cases allowing grafting procedures.

Based on the specific needs and expectations of the patient, the treating team decides how far the digital path will be followed.

Versatility in restoration methods
NobelGuide serves all scenarios – from simple to complex cases, as well as immediate function to conventional healing protocols.

NobelGuide includes several treatment steps after digitalization. Following the planning, a surgical template containing all planning information can be ordered for guided surgery. As a further, not mandatory step, the same surgical template can be used for prefabrication of prosthetics in the dental laboratory.

The possibilities of immediate function less pain and swelling, faster usage of a prosthetic restoration and reduction of chair time are key patient benefits of NobelGuide.

Guided surgery kits
- NobelReplace™
- Tapered Groovy™
- NobelSpeedy™
- Replace™
- NobelReplace™
- Straight Groovy™
- NobelSpeedy™
- Groovy™
- NobelSpeedy™
- Shorty™
- Brånemark System® MKIII Groovy™
- Brånemark System® MKIII Shorty™
- NobelSpeedy™ Groovy™
- NobelSpeedy™ Shorty™
Pre-fabricating a master cast for optimal prosthetics options.
NobelGuide™ – one solution for all indications.

NobelGuide supports all indications from partial single to multiple teeth missing to fully edentulous situations.

Surgical templates do even more than guide implants

Using the surgical template to create a stone model with implants already in-place before surgery enables the dental technician to create a provisional (or long-term) prosthetic solution before surgery. If immediate loading is part of the desired and selected treatment plan, the patient will benefit right after surgery from an immediate implant-supported restoration.

When immediate loading is not part of the treatment plan, the implants are left to heal conventionally and will be restored on the basis of a new impression. In this situation, the full range of Nobel Biocare’s standardized assortment as well as the individualized NobelProcera prosthetic solutions can be used.

Integrated supply chain

NobelGuide provides access to the entire Nobel Biocare assortment through the built-in order manager. This enables treatment specific surgical and lab components to be ordered simultaneously with the surgical template.

- Surgical template mounted on finished master model.
- Master model with planned implants in place – basis for prefabricated prosthetics.
- Mounting the new master cast in the articulator using the radiographic guide (with bite index) as reference.
- Fabrication of provisional (on stone model).
- Prefabricated provisional – ready to deliver to the patient.
- Fabricated surgical index in articulator for surgery.
CT Diagnostics
Pathological structures are excluded. The anatomy and morphology of the jawbone, as well as its embedded and surrounding structures, are systematically examined using reslice views of the CT data.

Prosthetic driven planning
Adding the Radiographic Guide to the 3D scene ensures that desired implant sites also meet prosthetic needs.

Evaluating the implant sites
The availability of bone, proximity to nerves or neighboring teeth can be inspected with virtually placed implants and “attach reslice to implants” views. In this mode, reslices in both axial and parallel views to the implant axes are dynamically displayed.

Case planning for three missing teeth in the esthetic zone, using a tooth-supported surgical template.

Considerations during software planning
Screenshots on pages 16 and 17 were taken during the planning workflow for partial case and display the initial X-ray diagnostics, as well as the prosthetic-driven planning.

NobelGuide planning takes into consideration the patient’s boney anatomy including the orientation, quality and relation of the alveolar bone towards the future prosthetic crowns. Virtual implant planning visualizes and evaluates the planned result against restorability. Since all information is clearly visible before immediate decisions have to be taken, expert opinions from other team members can be included into the plan.

Regardless if immediate function is part of the treatment, the implants will be optimally placed for prosthetics. Being pre-planned, high quality results and more efficient treatments are possible.

Prosthetic driven planning

Benefits
Esthetic zone prerequisites are fully considered. The decision of the treating team was to create more buccal bone volume through bone grafting in the same session as implant placement and to save keratinized tissue. Both requirements were met by opening a flap.

Planning output
– Ready-to-use, tooth-supported surgical template (without optional anchor pins).

Treatment approach
– Open flap guided surgery for safe and precise implant insertion and simultaneous bone grafting.
– Removable, non-implant-supported provisional during healing phase (submerged healing, cover screws).
– After healing and second stage surgery (implant positions located with the surgical template) impression based (screw-retained) provisional.
– Final restoration: 3-unit NobelProcera Implant Bridge Zirconia, veneered with porcelain.
Pathological structures are excluded. The anatomy and morphology of the fully edentulous jawbone, as well as its embedded and surrounding structures, are systematically examined using reslice views of the CT data.

Adding the Radiographic Guide to the 3D scene identifies desired implant sites also meet prosthetic needs.

The availability of bone, proximity to nerves or neighboring teeth can be inspected with virtually placed implants and "attach reslice to implants" views. In this mode, reslices in both axial and parallel views to the implant axes are dynamically displayed.
NobelGuide™ – fully edentulous case planning.

Case planning for fully edentulous indication, using a mucosa/anchor pin supported surgical template.

Considerations during software planning

Screenshots on pages 18 and 19 were taken during the planning workflow for a fully edentulous case and display the initial X-ray diagnostics, as well as the prosthetic-driven planning. NobelGuide planning takes into consideration the patient’s boney anatomy including the orientation, quality and relation of the alveolar bone towards to the future prosthetic crowns. Virtual implant planning visualizes and evaluates the planned result against restorability. Since all information is clearly visible before immediate decisions have to be taken, expert opinions from other team members can be included into the plan.

Regardless if immediate temporization is part of the treatment, the implants will be optimally placed for prosthetics. Being pre-planned, high quality results and more efficient treatments are possible.

Prosthetic driven planning

Benefits

– The decision of the treating team was to plan six implants in the fully edentulous maxilla, allowing for immediate restoration with a pre-fabricated screw-retained provisional (workflow on page 15).

Planning output

– Mucosa/anchor pin supported surgical template. Secured with 3 anchor pins.

Treatment approach

– Minimally invasive, flapless guided surgery for safe and precise implant insertion.
– Implant supported 10-unit all-acrylic provisional on Guided Abutments (screw retained).
– After healing, impression-based NobelProcera Implant Bridge Titanium, resin veneered.
Achiving excellent results with NobelGuide™.

Dr Annette Felderhoff/Dr Andrea Schnur, DDS
Dental X GmbH & Co. KG, Munich, Germany
Treating a patient is teamwork. Several players have to collaborate.

Case diagnostics and treatment planning starting with conventional clinical and prosthetic diagnostic procedures, resulting in a wax up.

As a result of the diagnostic procedures, clinically evaluated wax-ups are transformed into a radiographic guide for each jaw. Digitization follows the double scan technique.

Through NobelGuide planning NobelSpeedy implants are virtually placed - upper jaw: 2 implants on the right, 3 on the left side. A need for sinus floor augmentation is identified on both sides, lower jaw: 2 implants each at both sites. The plan is transferred to a ready to use surgical template.

Upper left side: minimal invasive access through tissue punch, Guided implant site preparation (surgical template). Bone condensation with dedicated tooling (osteotomes, internal sinus floor elevation). Guided Implant insertion, healing abutments.

Upper right side: external access for external sinus floor elevation. Flap elevation, through guided Surgery predictable and stable insertion of implants even in the measured bone quality 3 and 4. Cover screws, bone grafting and sealing with a resorbable membrane. submerged healing, tight suturing.
OPG after conventional healing time of 4 months. Second stage surgery upper right implants. Impression taking and fabrication of master models.

Wax up in the articulator for NobelProcera. (Following initial waxup)

All considerations taken during the NobelGuide planning facilitate the design of the NobelProcera framework design.

Try in of final NobelProcera zirconia framework

Final veneered single crowns, screw retained in the patient’s mouth.
Clinicians confirm NobelGuide™ efficacy.

“Using a prosthetic set-up the dentist can explore the wishes of the patient. Once this set-up is approved, it is integrated into the scanned images of the patient. This information is invaluable for me in evaluating whether the intended implant treatment is feasible, and allows me to explore alternative treatment modalities, if necessary.”

Dr Luc Vrielinck, Belgium

“The powerful viewing feature in the NobelGuide software allows me to clearly communicate all surgical as well as prosthetic criteria with my team. Sharing the final treatment plan with patients can also serve as part of the informed consent process. By educating my patients to the best of my ability, I feel more comfortable with our teams’ treatment approach.”

Dr Edmond Bedrossian, USA

“I use my personal software for diagnostic purposes and, in concert, with my oral surgeon to plan cases and order prostheses. Planning cases in NobelGuide assures that I will absolutely have all my restorative issues fully addressed and optimized. With CT becoming a standard of care in implant dentistry this program is truly essential for the restorative dentist.”

Dr Dan Velinsky, USA

“With NobelGuide, I have a tool for controlling the final implant’s position. For me, NobelGuide is much more than immediate function; we have solved many complex cases which involved bone augmentation where we left implants for conventional healing and later impression-based prosthetic reconstruction.”

Dr Christopher Marchack, USA

NobelGuide has been a natural evolution for us and is an essential part of our clinical practice. My clinical partners and I plan every case with 3D radiology data through NobelGuide; this makes it simple to get predictable and accurate results that meet our high demands for esthetics and functionality every time.”

Dr Leonard Marotta and Mr Steven Pigliacelli, USA

Treating a patient is teamwork. Several players have to collaborate in order to provide the best possible care within a reasonable time frame. A patient-centered treatment approach requires effective communication between all care providers. Connecting this team even closer together is the purpose of NobelGuide Connect.

NobelGuide Connect focuses on:
– producing the optimal planning within the treating team
– enlarging and securing the patient inflow within the referral network
– benefiting the patient

Effective communication
For optimal workflow and results, a clear and easy communication within the referral network is needed to secure inflow of patients and to establish the optimal treatment. NobelGuide provides tools to share treatment planning efficiently within the referral network, communicate treatment options and discuss as well as agree upon treatment strategies without the need of physical meetings.

NobelGuide 3D viewer
NobelGuide™ planning also facilitates information sharing and decision-making within the entire interdisciplinary team. The treatment plan is easily shared through a direct download link in an email and can be inspected with a free stand-alone 3D viewer.

Expert opinions in reach
Experienced colleagues are able to offer support in decision-making and reviewing treatment considerations or provide second opinions if requested. With NobelGuide Connect, secure data transmission is enabled. Planning information can be sent electronically for review, providing more security for the treating team and the patient.

Building trust
Clear and open communication and agreement of the treatment planning builds trust amongst the referral network and associated clinical team.

Building the practice
NobelGuide Connect builds practices by focusing on the patient, connecting with service providers and keeping referral networks up-to-date. Nobel Biocare is a one-stop shop providing customers everything needed to run their business.

NobelGuide was developed by Nobel Biocare in close collaboration with the Catholic University of Leuven. The concept includes a surgical template produced on the basis of a digital 3D planning. To ensure optimal guidance of drills and the implant mount, surgical sleeves and guides were developed. Also a dental lab procedure was developed to preoperatively produce the prosthetics.1

To enable minimal invasive surgery, and to minimize patient discomfort like swelling and pain, a flapless surgical procedure was evaluated and developed. Pre-fabricated prosthetics and immediate temporization were provided through guided abutments which were added to the concept.2 This concept was validated in a multi-center study with three centers on totally edentulous patients.3

The concept was pre-launched in 2003. During the pre-launch phase, about 500 patients were treated and the concept was extended towards partially edentulous patients. Following the Brånemark System, compatibility with NobelReplace and NobelSpeedy was also secured.4-7

In June 2005, NobelGuide was launched after extensive testing. Various papers in peer reviewed journals report on NobelGuide. 8–16

Continuous innovations

Today, great opportunities for further innovations are still ahead of us. Various extensions of NobelGuide towards digitally integrated prosthetics, a broader indication scope etcetera are currently being researched.

Based on the current technology pipeline, specialised treatments, such as orthognathic surgery, facial reconstructive surgery are within reach. Versatility in computer aided diagnosis, planning and treatment support will integrate digital dentistry even more in daily practice.

In addition, continuous clinical research validating and measuring performance of NobelGuide are continuously conducted in cadaver, retrospective and prospective studies.
References.

Order Manager in NobelGuide™ Software and Shop Online
The complete range of NobelGuide components as well as Nobel Biocare standardized products needed for surgery and components used for prefabrication of prosthetic solutions, is available for ordering twenty-four hours a day, seven days a week, through the Order Manager in the Nobel Guide software.

Additional Nobel Biocare components (the complete range of Nobel Biocare assortment except NobelProcera and NobelGuide surgical templates) are available to order in Shop Online. Once logged in, to the site, customers can find products using a simple search tool, input the necessary quantities, and then add the products to a convenient shopping cart. Once the order is complete, customers simply check out. The products will be shipped directly to the dental practice within a few days.

Customer service
If customers are unsure regarding the NobelGuide workflow, procedures and tools (hardware and software), Nobel Biocare has Customer Service Representatives who can answer all questions regarding the NobelGuide treatment solution. Representatives can also help customers set up a Shop Online account, and demonstrate its use for all future orders, if requested. A customer representative can be contacted through the local Nobel Biocare office (see next page).

Training and education
NobelGuide is a sophisticated concept with unique capabilities; knowing how to use it properly is of utmost importance. This is why Nobel Biocare recommends and offers a broad range of training courses and educational events focused on teaching the skills needed for successfully integrating NobelGuide™ into a dental practice. The complete offering – from one-day courses to several days training for new to advanced users, and around the globe – is available at www.nobelbiocare.com/education.

Training and education activities are led by international and local experts specially trained in the NobelGuide.

Additional support
NobelGuide is supported by a broad assortment of Nobel Biocare literature. Material ranges from purely informative to instructional, and everything is available for download from the NobelGuide product webpage: www.nobelbiocare.com
Nobel Biocare worldwide.

<table>
<thead>
<tr>
<th>Region</th>
<th>Country</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe and Russia</td>
<td>Austria</td>
<td>Nobel Biocare Austria 1 892 89 90 Phone: +43 1 892 89 90</td>
</tr>
<tr>
<td></td>
<td>Belgium</td>
<td>Nobel Biocare Belgium 892 41 70 Phone: +32 2 467 41 70</td>
</tr>
<tr>
<td></td>
<td>Denmark</td>
<td>Nobel Biocare Denmark 34 48 48 Phone: +45 39 40 48 48</td>
</tr>
<tr>
<td></td>
<td>Finland</td>
<td>Nobel Biocare Finland 34 69 70 Phone: +389 34 34 69 70</td>
</tr>
<tr>
<td></td>
<td>France</td>
<td>Nobel Biocare France 49 00 30 Phone: +33 1 49 20 00 30</td>
</tr>
<tr>
<td></td>
<td>Germany</td>
<td>Nobel Biocare Germany 30 00 Phone: +49 221 500 85 0 Cust. support: +49 221 500 85 690</td>
</tr>
<tr>
<td></td>
<td>Hungary</td>
<td>Nobel Biocare Hungary 36 79 Phone: +38 1 279 33 79</td>
</tr>
<tr>
<td></td>
<td>Ireland</td>
<td>Nobel Biocare Ireland 64 12 Phone: +353 1201 64 12 Cust. support: +44 1895 430 650</td>
</tr>
<tr>
<td></td>
<td>Italy</td>
<td>Nobel Biocare Italy 63 28 Phone: +39 039 683 61 Cust. support: toll free 800 53 93 28</td>
</tr>
<tr>
<td></td>
<td>Lithuania</td>
<td>Nobel Biocare Lithuania 34 48 Phone: +370 5 268 34 48 Cust. support: toll free 880 01 23 24</td>
</tr>
<tr>
<td></td>
<td>Netherlands</td>
<td>Nobel Biocare Netherlands 49 49 Phone: +31 30 635 49 49</td>
</tr>
<tr>
<td></td>
<td>Norway</td>
<td>Nobel Biocare Norway 28 30 Phone: +47 23 24 98 30</td>
</tr>
<tr>
<td></td>
<td>Poland</td>
<td>Nobel Biocare Poland 59 44 Phone: +48 22 874 59 44 Cust. support: +48 22 874 59 45</td>
</tr>
<tr>
<td></td>
<td>Portugal</td>
<td>Nobel Biocare Portugal 73 50 Phone: +36 1 234 73 50 Cust. support: toll free 800 300 100</td>
</tr>
<tr>
<td></td>
<td>Russia</td>
<td>Nobel Biocare Russia 75 55 Phone: +7 495 974 77 55 Cust. support: toll free 800 850 008</td>
</tr>
<tr>
<td></td>
<td>Spain</td>
<td>Nobel Biocare Spain 88 00 Phone: +34 9 3 508 88 00 Cust. support: toll free 800 850 008</td>
</tr>
<tr>
<td></td>
<td>Sweden</td>
<td>Nobel Biocare Sweden 49 10 Phone: +46 31 335 49 10 Cust. support: +46 31 335 49 10</td>
</tr>
<tr>
<td></td>
<td>Switzerland</td>
<td>Nobel Biocare Switzerland 20 Phone: +41 43 211 53 20</td>
</tr>
<tr>
<td></td>
<td>United Kingdom</td>
<td>Nobel Biocare UK 650 Phone: +44 1895 430 650</td>
</tr>
<tr>
<td>North America</td>
<td>Canada</td>
<td>Nobel Biocare Canada 3500 Phone: +1 905 762 35 00 Cust. support: +1 800 939 93 94</td>
</tr>
<tr>
<td></td>
<td>USA</td>
<td>Nobel Biocare USA 5000 Phone: +1 714 282 48 00 Cust. support: +1 800 322 50 01</td>
</tr>
<tr>
<td></td>
<td>Argentina</td>
<td>Nobel Biocare Argentina 9696 Phone: +54 11 4825 96 96 Cust. support: toll free 800 000 66 23 5</td>
</tr>
<tr>
<td></td>
<td>Brazil</td>
<td>Nobel Biocare Brazil 7000 Phone: +55 11 5102 70 00 Cust. support: 8000 169 99 6</td>
</tr>
<tr>
<td></td>
<td>Chile</td>
<td>Nobel Biocare Chile 9282 Phone: +562 201 92 82</td>
</tr>
<tr>
<td></td>
<td>Colombia</td>
<td>Nobel Biocare Colombia 1255 Phone: +57 1 620 94 10 Cust. support: toll free 1 800 012 1255</td>
</tr>
<tr>
<td></td>
<td>Mexico</td>
<td>Nobel Biocare Mexico 47 60 Phone: +55 55 524 97 60</td>
</tr>
<tr>
<td>Asia Pacific</td>
<td>Australia</td>
<td>Nobel Biocare Australia 51 00 Phone: +61 2 8064 51 00 Cust. support: toll free 1800 804 69 7</td>
</tr>
<tr>
<td></td>
<td>China</td>
<td>Nobel Biocare China 66 55 Phone: +86 21 5206 86 55 Cust. support: +86 21 5206 09 74</td>
</tr>
<tr>
<td></td>
<td>Hong Kong</td>
<td>Nobel Biocare Hong Kong 26 66 Phone: +852 2845 12 66 Cust. support: +852 2823 89 26</td>
</tr>
<tr>
<td></td>
<td>India</td>
<td>Nobel Biocare India 99 99 Phone: +91 22 6751 99 99 Cust. support: toll free 1 800 22 99 98</td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td>Nobel Biocare Japan 19 19 Phone: +81 3 6717 61 91</td>
</tr>
<tr>
<td></td>
<td>New Zealand</td>
<td>Nobel Biocare New Zealand 10 00 Phone: +61 2 8064 51 00 Cust. support: toll free 0800 44 1 65</td>
</tr>
<tr>
<td></td>
<td>Singapore</td>
<td>Nobel Biocare Singapore 82 23 Phone: +852 2823 89 23 Cust. support: 65 6737 79 67</td>
</tr>
<tr>
<td></td>
<td>Taiwan</td>
<td>Nobel Biocare Taiwan 33 33 Phone: +886 2 27 93 99 33</td>
</tr>
<tr>
<td>Middle East and Africa</td>
<td>Middle East and Israel</td>
<td>Nobel Biocare Middle East and Israel 58 51 Phone: +48 22 874 58 51</td>
</tr>
<tr>
<td></td>
<td>South Africa</td>
<td>Nobel Biocare South Africa 01 12 Phone: +27 11 802 01 12</td>
</tr>
</tbody>
</table>